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Abstract. We calculate the conductance for a diffusive normal wire (N) in contact with a
superconductor (S). Using a numerical scattering matrix approach and a quasiclassical Green
function technique, we compare the conductanceG of the system connected to two normal
reservoirs when the superconductor is in its normal state with the conductanceGs in the
superconducting state and predict that the differenceδG = Gs −G may be negative or positive
depending upon the S/N interface resistance and the interface resistance at the ends of the N
wire. As the temperatureT is varied,δG(T ) may change sign and exhibit two maxima.

Theoretical studies carried out in recent years have revealed that the proximity effect
enhances the conductance of a normal metal (N) film in contact with a superconducting
metal (S) strip (see for example [1–4] and reviews [5, 6]). The temperature dependence of
the conductanceδG caused by the proximity effect has a nonmonotonic behaviour, with
the zero-bias conductanceδG vanishing atT = 0, reaching a maximum atT ≈ εT h then
tending to zero forT � εT h [1, 3, 4], whereεT h = D/L2 is the Thouless energy,D is the
diffusion coefficient. A similar dependence occurs forδG as a function of the voltage, at
zero temperature [2]. This nonmonotonic behaviour was first predicted in [7] where a short
ScN (c meaning constriction) contact was analysed. Using the assumptionεT h � 1 it was
shown thatδG reaches a maximum atT ≈ 1. Therefore, one can state that in the general
case the conductance variation has a maximum atT ≈ min[1, εT h]. Such nonmonotonic
behaviour ofδG has been observed experimentally both in short ScN contacts [8] and in
mesoscopic S/N structures whereεT h � 1 [9–11].

The above statement about positiveδG refers to the conductance variation of the normal
wire δGN only, whereas the experimentally measured conductance variationδG of the whole
system includes not onlyδGN but also a variation of the interface conductancesδGS/N and
δGN/N ′ (see figure 1) where N′ denotes the normal reservoirs. Evidently the N/N′ interface
resistance can lead to a negative variation of the conductanceδG of the system asδGN/N ′

is determined by a variation of the density of states (DOS) in the normal film near the N/N′

interface and belowTc the DOS at small energies in the N film is decreased [12, 13]. This
decrease of the DOS in the N film was measured in [14]. IfδGN/N ′ dominates overδGN ,
then δG is negative. An applied magnetic fieldH or a finite phase differenceφ (where
|φ| < π/2) between two superconductors attached to the N film leads to a suppression of the
proximity effect and an increase of the system conductance. A transition from a decrease
of δG with increasingH or φ to an increase ofδG has been predicted in [15] and [16] for
the zero-temperature case. For finite temperatures this effect was studied recently in [17]
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and [18]. Another reason for a negativeδG is the shunting effect of the S strip. In the
superconducting state the S/N interface resistance is increased and therefore the shunting
effect of the S strip is weakened. In this letter we examine an N conductor of length 2L in
the presence of a superconducting contact of length 2L1, and show that if the ratio of the
S/N interface conductance to the conductance of the N film is less than(L1/L)

2 then the
variation of the total conductanceδG is negative even in the absence of the N/N′ interface
resistance. In this case an applied magnetic field enhances the effect of negativeδG. We
will present the temperature dependence ofδG(T ) for different (RS/N/RL) ≡ g−1

b1 and
(RN/N ′/RL) ≡ rb2 and show that the sign of the overall conductance variation depends on
gb1 and rb2 in a complicated way. It is interesting to note thatδG(T ) has a peak not only
at T1 ≈ εT h but also at a temperatureT2 close toTc when1(T2) ≈ εT h.
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Figure 1. The structure considered.

We consider the system shown in figure 1. The distribution functions in the reservoirs
N′ are assumed to be at equilibrium and the condensate functionsFR (A) are equal to zero.
We assume also that the S/N interface resistanceRS/N is larger than the resistance of the
N film. In this case the proximity effect is weak; this means that the amplitudes of the
condensate functionsFR (A) induced in the N film are small and therefore all the variations
of the interface conductances (δGS/N, δGN,N ′ ) and the N film conductance (δGN ) are small
compared with the conductance of the system in the normal state [2, 3, 15]. We consider an
arbitary N/N′ interface resistance and restrict the analysis to the diffusive regime where the
mean free path is shorter than the coherence length. To calculate the conductance variation
δG, we first employ the quasiclassical Green function technique [1, 2, 4, 6, 7, 15] which is
valid when quantum corrections to the conductance are not important (G� e2/h) and also
use a scattering matrix approach which allows one to study the case of arbitraryG [2, 5, 6].
The distribution functionf obeys the equation [3, 15, 19]

L2∂x
(
(1−m)∂xf

) = fgbGbϑ(x ∈ (S/N)) (1)

where the functionϑ(x) is equal to 1 in the S/N region and zero otherwise,m =
Tr(F̂ R − F̂ A)2/8 andF̂ R (A) is the retarded (advanced) Green function,gb = ρL2/Rb�d =
gb1(L/L1), gb1 is the ratio of the normal film resistance to the S/N resistance,Rb� is the
S/N interface resistance per unit area in the normal state,ρ andd are the specific resistivity
and the thickness of the normal film. The functionGb(x) determines the local normalized
conductance of the S/N interface in the superconducting state,

Gb(x) = νsνn + Tr(F̂ R + F̂ A)(F̂ Rs + F̂ As )/8 (2)
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where the DOS in the superconductorνS = Re(ε + i0)/
√
(ε + i0)2−12 and νN is the

DOS in the normal film (for simplicity we assumeνn = 1 so thatνS = νN when1 = 0).
The first term in equation (2) describes the contribution of the quasiparticle current to the
conductance (if0 = 0 it differs from zero only at energies|ε| > 1). The second term is
due to Andreev reflection and describes a conversion of the low-energy quasiparticle current
into the condensate current (if0 = 0, the current is not zero for|ε| < 1). The condensate
functionsF̂ R (A)s in the superconductor are assumed undisturbed by the proximity effect, and
they are equal tôFR (A)s = iτ̂yFR (A)s , whereFR (A)s = 1/

√
(ε + i0)2−12, 0 is the damping

rate in the excitation spectrum of the superconductor. Equation (1) is supplemented by the
boundary condition atx = L [20–22],

Lrb2(1−m)δxf = ν
[
Fv − f

]
(3)

whererb2 = RN/N ′/RL, RN/N ′ andRL are the resistances of the N/N′ interface and of the
normal film respectively;ν(ε) = (GR − GA)/2 is the DOS of the normal film atx = L.
Fv = [tanh(ε + eV ) β − tanh(ε − eV ) β] /2 is the difference of the distribution functions
in the N′ reservoirs. The retarded (advanced) Green functionsFR (A) obey the linearized
Usadel equation. The details of calculations are similar to those of [2, 3, 15, 19], and yield
the following expression for the normalized variation of the conductance,

δS = (Gs −Gn)

Gn

= δS1+ δS2+ δS3. (4)

HereδSi (i = 1, 2, 3) are the normalized conductance variations of the conductances of the
S/N, N/N′ interfaces and of the N film respectively and can be obtained ‘partial’ normalized
conductances, via the relations

δSi =
∫ ∞

0
∂εβF ′v(ε)δSip.(ε). (5)

Here δS1p(ε) = −〈m〉/(1+ rb2), 〈m〉 = Tr〈(F̂ R − F̂ A)2〉/8; δS2p(ε) = rb2δν/(1+ rb2),
δν = Re(FR)2/2 at x = L, δS3p(ε) = [l1(mb1 − 〈mb1〉) − gbl31/3]/(1 + rb2). The
angle brackets mean the spatial averaging over the region(0, L1) and (0, L); mb(x) =
(gb/L

2)
∫ x

0 dyyGb(y), F ′v = β−1∂εFv. Finding the retarded (advanced) condensate Green
functionsFR (A)(ε, x) from the linearized Usadel equation, we can calculate all the quantities
in equation (4) determiningδS.

In figure 2 we show the dependence ofδS̃ ≡ δS(1 + rb2)/(gbl1)
2 on the inverse

temperatureα = εT h/(2T ) for different normalized interface conductancesr−1
b2 and gb.

The normalized width of the superconducting stripl1 = L1/L is equal to 0.2. One can
see that in the absence of the N/N′ resistance (rb2 = 0) for gb = 1.0, the variation of
the conductanceδS is negative over a wide temperature range, increasing asT increases
with a flat maximum atT ≈ εT h (α 6 1). By increasingrb2 the conductance variation
becomes positive and the peak at the Thouless energy increases significantly. This change
in the δS(T ) dependence is caused by an increase of the N film conductanceδS3 due to an
enhancement of the proximity effect with increasingrb2.

In the case of larger S/N interface conductance (gb = 2) the conductance variationδS
is positive for relatively low temperatures (figure 2(b)) with a flat maximum atT ≈ εT h.
This maximum again becomes more pronounced with increasingrb2. We see that in both
casesδS is positive nearTc where it has a second maximum, occuring at a temperatureT2

where1(T2) is comparable to the the Thouless energy. To our knowledge this maximum
has neither been observed nor discussed in the literature. We will analyse the nature of this
maximum and conditions under which it can be observed elsewhere.
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Figure 2. The variation ofδS with α (inverse temperature), with the parametersl1 = 0.2, γ =
0.1 and0 = 0.1 at zero voltage. Figure (A) showsδS for rb2 = 0, rb2 = 0.5 andrb2 = 1 with
gb = 1, figure (B) showsδS for rb2 = 0, rb2 = 0.5 andrb2 = 1 with gb = 2. The depairing
rate in the N film (γ ) and in the superconductor (0) are measured in unitsεT h; we also set the
zero temperature1(0) = 10 εT h.

In figure 3δS(T ) is shown for the case of a narrow superconducting strip (l1 = 0.03).
In this caseδS is positive over a wide temperature range (α < 4). With increasingrb2 the
value ofT at which δS changes sign increases, andδS becomes negative for example at
α > 1.5 (rb2 = 5) in accordance with the results of [15] and [16]. With increasingT the
conductance variation reaches a maximum atT ≈ εT h.

It is important to note that the changing sign ofδS when the parameters of the system
(T , rb2, gb) are varying implies a transition of the phase dependence ofδS3 in the case
of a system with two superconductors. If one considers two S strips attached to the N
film symmetrically (or a cross geometry investigated in [23]), then the dependence of the
conductance of the system on the phase differenceφ is determined by the simple formula
G = Gn + δG(1+ cos(φ)). Thus the conductance G decreases (increases) with increasing
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Figure 3. The variation ofδS with α (inverse temperature), with the parametersl1 = 0.03, γ =
0.1, 0 = 0.1, rb2 = 0, rb2 = 1 andrb2 = 5 with gb = 1 at zero voltage.

φ in the case of positive (negative)δG = δSGn (at |φ| < π ).
As an independent check of the above predictions we have used the scattering approach

reviewed in [2] to determineδG, for a tight binding lattice with the geometry of figure 1.
The numerical approach allows us to investigate the regime that lies outside the validity of
the quasiclassical approach used above, namely at zero temperature and incorporating fully
quantum corrections to the conductance.

In the linear-response limit, the conductance of a phase-coherent structure may be
calculated from the fundamental current–voltage relationship [24], which expresses the
conductance in terms of Andreev(Ta(Ra)) and normal(T0(R0)) transmission (reflection)
coeffcients. As noted in [26], in the presence of disorder, the various transmission and
reflection coeffcients can be computed by solving the Bogoliubov–de Gennes equation. By
numerically solving for the scattering matrix, exact results for the dc conductance can be
obtained [16, 24, 25].

For the structure shown in figure 1, with a superconductor of length 2L1 lattice sites,
and an effective barrier resistanceRS/N between the superconductor and the normal metal,
we have calculated the ensemble averaged conductance variation〈δG〉 (〈δG〉 = 〈G−Gs〉) in
units of 2e2/h, for a normal diffusive region of dimensions 40 sites wide and 64 sites long,
with no barrier between the normal wire and the reservior (i.e.rb2 = 0). The superconductor
is of width 20 sites with an order parameter of magnitude10 = 0.1 (10 = 0) in the
superconducting (normal) state. Results were obtained by averaging over 100 disorder
realizations, yielding an estimated error in the mean values of approximately 0.04.

At zero temperature and bias, forL1 = 15 andRS/N = 2, 〈δG〉 = −0.30; reducing
RS/N to 0.5 yields〈δG〉 = 0.16 confirming the above predictions of quasiclassical theory
about the change of sign of〈δG〉. At finite temperature (kBT = εT h) for L1 = 15 and
RS/N = 2, 〈δG〉 = −0.12, again confirming the above results.

Using quasiclassical theory we have established that the conductance variationδG of
the system shown in figure 1 due to the proximity effect may be either positive or negative
depending on the parameters of the system (the interface resistances, temperature etc). For
selected parameter values this result was confirmed using a numerical scattering approach.
If the S/N interface resistance is large enough (gbl1 < l1) and the N/N′ interface resistance is
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small, thenδG is negative over a wide temperature range. If the N/N′ interface resistance is
not small compared to the resistance of the N film, thenδG is negative at low temperatures.
In the case of negativeδG, the conductance of a system with two superconductors will
increase with increasing phase difference (atφ < π ). In [23] Petrashovet al measured
the conductance of a mesoscopic S/N cross structure, and observed a negative variation of
δG in the Ag/Al structure and a positiveδG in the Sb/Al structure. The cross geometry
differs greatly from that analysed above, because in this case the shunting effect of the
superconductor is absent (the current does not flow across the S/N interface) and the N/N′

interface resisitance seems to be small. Perhaps the negative variation ofδG is caused by
a nonuniform current distribution, as suggested by Wilhelmet al [27]. However there are
experiments on S/N structures in which a negativeδG has been observed, with a uniform
current density distribution [28–30]. The mechanism for the conductance decrease below
Tc in these structures maybe related to a contribution of the S/N or the N/N′ interface
resistances studied in the present work, although it is difficult to compare our results with
experimental data due to the lack of information about the interface resistances. The results
obtained by us may stimulate further experiments on structures with a geometry similar to
that studied here, with known interface resistances. There are two peaks in the temperature
dependenceδG(T ); one of them located at a temperatureT1 in the vicinity of the Thouless
energyεT h and another peak corresponding to a temperatureT2 at which1(T2) ≈ εT h. The
first maximum in theδG(T ) dependence (atα ≈ 1) is well known [1, 3, 4], whereas the
second maximum at higher temperatures (smallα) is predicted here for the first time. We
note a peculiarity (a minimum) in the temperature dependence of the local conductivity was
obtained in [27] for the case of a two-dimensional geometry. The nature of this feature is
different from that leading to the maximum inδG(T ) of the two-terminal, one-dimensional
geometry analysed above.
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