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Abstract. We calculate the conductance for a diffusive normal wire (N) in contact with a
superconductor (S). Using a numerical scattering matrix approach and a quasiclassical Green
function technique, we compare the conductagtef the system connected to two normal
reservoirs when the superconductor is in its normal state with the conduct@nde the
superconducting state and predict that the differéf@€e= Gy, — G may be negative or positive
depending upon the S/N interface resistance and the interface resistance at the ends of the N
wire. As the temperatur€ is varied,6G(T) may change sign and exhibit two maxima.

Theoretical studies carried out in recent years have revealed that the proximity effect
enhances the conductance of a normal metal (N) film in contact with a superconducting
metal (S) strip (see for example [1-4] and reviews [5, 6]). The temperature dependence of
the conductancéG caused by the proximity effect has a honmonotonic behaviour, with
the zero-bias conductané& vanishing atT = 0, reaching a maximum & ~ 7, then
tending to zero folT > ey [1,3, 4], whereey, = D/L? is the Thouless energy) is the
diffusion coefficient. A similar dependence occurs 8@ as a function of the voltage, at
zero temperature [2]. This nonmonotonic behaviour was first predicted in [7] where a short
ScN (c meaning constriction) contact was analysed. Using the assunaption A it was
shown thatsG reaches a maximum &t ~ A. Therefore, one can state that in the general
case the conductance variation has a maximufi at min[A, €7,]. Such nonmonotonic
behaviour of§G has been observed experimentally both in short ScN contacts [8] and in
mesoscopic S/N structures wherg, < A [9-11].

The above statement about positb@ refers to the conductance variation of the normal
wire §G y only, whereas the experimentally measured conductance varsatiorfithe whole
system includes not onl§G y but also a variation of the interface conductand6s,y and
3G/~ (see figure 1) where 'Nlenotes the normal reservoirs. Evidently the NiNerface
resistance can lead to a negative variation of the conductaGioef the system asGy, -
is determined by a variation of the density of states (DOS) in the normal film near tHe N/N
interface and below, the DOS at small energies in the N film is decreased [12, 13]. This
decrease of the DOS in the N film was measured in [145Gf,y- dominates ovesGy,
then 3G is negative. An applied magnetic field or a finite phase difference (where
|| < 7/2) between two superconductors attached to the N film leads to a suppression of the
proximity effect and an increase of the system conductance. A transition from a decrease
of §G with increasingH or ¢ to an increase o§G has been predicted in [15] and [16] for
the zero-temperature case. For finite temperatures this effect was studied recently in [17]
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and [18]. Another reason for a negati¥& is the shunting effect of the S strip. In the
superconducting state the S/N interface resistance is increased and therefore the shunting
effect of the S strip is weakened. In this letter we examine an N conductor of lehgih 2

the presence of a superconducting contact of lendth and show that if the ratio of the
SIN interface conductance to the conductance of the N film is less(ihgil)? then the
variation of the total conductan@&; is negative even in the absence of the NifNerface
resistance. In this case an applied magnetic field enhances the effect of négatiViée

will present the temperature dependences6f(T) for different (Rs/n/R.) = g,;ll and
(Rn,n/R1) = rp2 and show that the sign of the overall conductance variation depends on
gr andry, in a complicated way. It is interesting to note tld&t(7T) has a peak not only

at Ty =~ €7, but also at a temperatuf® close to7T, when A(T2) ~ er,.
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Figure 1. The structure considered.

We consider the system shown in figure 1. The distribution functions in the reservoirs
N’ are assumed to be at equilibrium and the condensate fundiibf8 are equal to zero.
We assume also that the S/N interface resistaRige is larger than the resistance of the
N film. In this case the proximity effect is weak; this means that the amplitudes of the
condensate functions® W induced in the N film are small and therefore all the variations
of the interface conductance$s,y, Gy, ) and the N film conductancé G ) are small
compared with the conductance of the system in the normal state [2, 3, 15]. We consider an
arbitary N/N interface resistance and restrict the analysis to the diffusive regime where the
mean free path is shorter than the coherence length. To calculate the conductance variation
3G, we first employ the quasiclassical Green function technique [1, 2,4, 6, 7, 15] which is
valid when quantum corrections to the conductance are not impoiGast ¢2/ ) and also
use a scattering matrix approach which allows one to study the case of arlitf2rp, 6].
The distribution functionf obeys the equation [3, 15, 19]

L3 ((1—m)d, f) = fgGpd (x € (S/N)) (1)

where the function?(x) is equal to 1 in the S/N region and zero otherwise, =
Tr(ER — F4)2/8 and FR 4 is the retarded (advanced) Green functigh= pL2/R,nd =
gr1(L/L1), gp1 is the ratio of the normal film resistance to the S/N resista®gg, is the
S/N interface resistance per unit area in the normal statandd are the specific resistivity
and the thickness of the normal film. The functié(x) determines the local normalized
conductance of the S/N interface in the superconducting state,

Gy(x) = vyv, + Tr(ER 4 FAY(ER + F4)/8 )
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where the DOS in the superconductgr = Re(e + il")/y/(e +i)2 — A2 and vy is the

DOS in the normal film (for simplicity we assumg = 1 so thatvg = vy when A = 0).

The first term in equation (2) describes the contribution of the quasiparticle current to the
conductance (it" = 0 it differs from zero only at energigg| > A). The second term is

due to Andreev reflection and describes a conversion of the low-energy quasiparticle current
into the condensate current (if = 0, the current is not zero fge| < A). The condensate
functionsﬁf ) in the superconductor are assumed undisturbed by the proximity effect, and
they are equal t&' X = iz, FR whereFR = A/,/(e +iT)2 — A2, T is the damping

rate in the excitation spectrum of the superconductor. Equation (1) is supplemented by the
boundary condition at = L [20-22],

Lry(L—m)s, f = v[F, — f] (3)

wherery, = Ry/n'/R1, Ryyn @and R, are the resistances of the N/Mterface and of the
normal film respectivelyy(e) = (G¥ — G*)/2 is the DOS of the normal film at = L.
F, = [tanh(e + ¢V) 8 — tanh(e — ¢V) 8] /2 is the difference of the distribution functions
in the N reservoirs. The retarded (advanced) Green functiBfi&" obey the linearized
Usadel equation. The details of calculations are similar to those of [2, 3, 15, 19], and yield
the following expression for the normalized variation of the conductance,

88 = w =681 4852+ 88Ss. 4)
HeresS; (i = 1, 2, 3) are the normalized conductance variations of the conductances of the
S/N, N/N interfaces and of the N film respectively and can be obtained ‘partial’ normalized
conductances, via the relations

8S; = /OO IeBF.(€)8Si,.(€). (5)
0

Here 851,(e) = —(m)/(1+ ry2), (m) = Tr{(FF — F4)2)/8; §S2,(€) = ryadv/(1+ r2),
Sv = Re(FR)?2/2 atx = L, 8S3p(€) = [la(mpr — (mp1)) — gl3/31/(1 + r2). The
angle brackets mean the spatial averaging over the re@oh,) and (O, L); m,(x) =
(g»/L?) [y dyyGy(y), F, = B~*0.F,. Finding the retarded (advanced) condensate Green
functionsF® (¢, x) from the linearized Usadel equation, we can calculate all the quantities
in equation (4) determinings.

In figure 2 we show the dependence & = 5SL+ rp2)/(gpl1)? on the inverse
temperaturer = €7, /(27) for different normalized interface conductano%;1L and g,.
The normalized width of the superconducting sthip= L;/L is equal to 0.2. One can
see that in the absence of the N/isistancer,, = 0) for g, = 1.0, the variation of
the conductancésS is negative over a wide temperature range, increasing awreases
with a flat maximum atl’ ~ er, (¢ < 1). By increasingr,,; the conductance variation
becomes positive and the peak at the Thouless energy increases significantly. This change
in the S(T) dependence is caused by an increase of the N film conductapahie to an
enhancement of the proximity effect with increasing.

In the case of larger S/N interface conductangge=€ 2) the conductance variatiofs
is positive for relatively low temperatures (figure 2(b)) with a flat maximunT at er;,.
This maximum again becomes more pronounced with increagpgWe see that in both
cases’S is positive neaff. where it has a second maximum, occuring at a tempergture
where A(T,) is comparable to the the Thouless energy. To our knowledge this maximum
has neither been observed nor discussed in the literature. We will analyse the nature of this
maximum and conditions under which it can be observed elsewhere.
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Figure 2. The variation of§ S with « (inverse temperature), with the parametgrs- 0.2, y =
0.1 andI" = 0.1 at zero voltage. Figure (A) shows for ry, = 0, rpp = 0.5 andr,y = 1 with
g»r = 1, figure (B) showssS for r,p = 0,2 = 0.5 andrpz = 1 with g, = 2. The depairing
rate in the N film ) and in the superconductor( are measured in units;,; we also set the
zero temperaturé (0) = 10 e7,.

In figure 33S(T) is shown for the case of a narrow superconducting stgip=(0.03).
In this case’S is positive over a wide temperature range< 4). With increasing, the
value of T at which§S changes sign increases, afisl becomes negative for example at
a > 1.5 (r,, = 5) in accordance with the results of [15] and [16]. With increasihthe
conductance variation reaches a maximund &t e7y,.

It is important to note that the changing signdsf when the parameters of the system
(T, rp2, g») are varying implies a transition of the phase dependencéSefin the case
of a system with two superconductors. If one considers two S strips attached to the N
film symmetrically (or a cross geometry investigated in [23]), then the dependence of the
conductance of the system on the phase differehie determined by the simple formula
G =G, +38G(1+ cog¢)). Thus the conductance G decreases (increases) with increasing
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Figure 3. The variation ofs S with o (inverse temperature), with the parameters- 0.03, y =
0.1,T =0.1, rp2 =0, rp2 = 1 andrpp = 5 with g, = 1 at zero voltage.

¢ in the case of positive (negativél; = §SG,, (at|¢| < 7).

As an independent check of the above predictions we have used the scattering approach
reviewed in [2] to determinéG, for a tight binding lattice with the geometry of figure 1.

The numerical approach allows us to investigate the regime that lies outside the validity of
the quasiclassical approach used above, namely at zero temperature and incorporating fully
guantum corrections to the conductance.

In the linear-response limit, the conductance of a phase-coherent structure may be
calculated from the fundamental current—voltage relationship [24], which expresses the
conductance in terms of Andre&¥,(R,)) and normal(7Tp(Rp)) transmission (reflection)
coeffcients. As noted in [26], in the presence of disorder, the various transmission and
reflection coeffcients can be computed by solving the Bogoliubov—de Gennes equation. By
numerically solving for the scattering matrix, exact results for the dc conductance can be
obtained [16, 24, 25].

For the structure shown in figure 1, with a superconductor of lengthl&ttice sites,
and an effective barrier resistanfg,y between the superconductor and the normal metal,
we have calculated the ensemble averaged conductance vat&dipsG) = (G —G)) in
units of 22/ h, for a normal diffusive region of dimensions 40 sites wide and 64 sites long,
with no barrier between the normal wire and the reservior £jze= 0). The superconductor
is of width 20 sites with an order parameter of magnitutlg = 0.1 (Ao = 0) in the
superconducting (normal) state. Results were obtained by averaging over 100 disorder
realizations, yielding an estimated error in the mean values of approximately 0.04.

At zero temperature and bias, férn = 15 andRs/y = 2, (8G) = —0.30; reducing
Rs/n t0 0.5 yields(8G) = 0.16 confirming the above predictions of quasiclassical theory
about the change of sign @6G). At finite temperaturekzT = ¢7;,) for Ly = 15 and
Rs/ny = 2, (8G) = —0.12, again confirming the above results.

Using quasiclassical theory we have established that the conductance vaiition
the system shown in figure 1 due to the proximity effect may be either positive or negative
depending on the parameters of the system (the interface resistances, temperature etc). For
selected parameter values this result was confirmed using a numerical scattering approach.
If the S/N interface resistance is large enougfiy( < /) and the N/Ninterface resistance is
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small, thensG is negative over a wide temperature range. If the Niiterface resistance is

not small compared to the resistance of the N film, thénis negative at low temperatures.

In the case of negativéG, the conductance of a system with two superconductors will
increase with increasing phase difference gak 7). In [23] Petrashowet al measured

the conductance of a mesoscopic S/N cross structure, and observed a negative variation of
3G in the Ag/Al structure and a positiveG in the Sb/Al structure. The cross geometry
differs greatly from that analysed above, because in this case the shunting effect of the
superconductor is absent (the current does not flow across the S/N interface) and the N/N
interface resisitance seems to be small. Perhaps the negative variatiGhisfcaused by

a nonuniform current distribution, as suggested by Wilhetnal [27]. However there are
experiments on S/N structures in which a negai¢e has been observed, with a uniform
current density distribution [28—30]. The mechanism for the conductance decrease below
T. in these structures maybe related to a contribution of the S/N or thé iNtdtface
resistances studied in the present work, although it is difficult to compare our results with
experimental data due to the lack of information about the interface resistances. The results
obtained by us may stimulate further experiments on structures with a geometry similar to
that studied here, with known interface resistances. There are two peaks in the temperature
dependencéG (T); one of them located at a temperatdiein the vicinity of the Thouless
energyer;, and another peak corresponding to a temperakgisgt which A(T») ~ €7;,. The

first maximum in theSG(T) dependence (at ~ 1) is well known [1, 3, 4], whereas the
second maximum at higher temperatures (smglis predicted here for the first time. We

note a peculiarity (a minimum) in the temperature dependence of the local conductivity was
obtained in [27] for the case of a two-dimensional geometry. The nature of this feature is
different from that leading to the maximum &G (T) of the two-terminal, one-dimensional
geometry analysed above.
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